简介

Sharding-JDBC直接封装JDBC API,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零:

  • 可适用于任何基于java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。
  • 可基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid等。
  • 理论上可支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL。

Sharding-JDBC定位为轻量级java框架,使用客户端直连数据库,以jar包形式提供服务,未使用中间层,无需额外部署,无其他依赖,DBA也无需改变原有的运维方式。采用”半理解”理念的SQL解析引擎,以达到性能与兼容性的最大平衡。

Sharding-JDBC功能灵活且全面:

  • 分片策略灵活,可支持=,BETWEEN,IN等多维度分片,也可支持多分片键共用。
  • SQL解析功能完善,支持聚合,分组,排序,Limit,TOP等查询,并且支持Binding Table以及笛卡尔积的表查询。
  • 支持柔性事务(目前仅最大努力送达型)。
  • 支持读写分离。
  • 支持分布式生成全局主键。

Sharding-JDBC配置多样:

  • 支持Java编码和YAML的配置方式
  • 支持自定义Spring命名空间与Spring boot starter
  • 灵活多样的inline表达式

分布式治理能力突出: (2.0 only)

  • 配置集中化与动态化,可支持数据源、表与分片策略的动态切换 (2.0.0.M1)
  • 客户端的数据库治理,运行实例禁用启用 (2.0.0.M2)
  • 基于Open Tracing协议的APM信息输出,读写分离Slave数据源禁用启用及ConfigMap支持 (2.0.0.M3)

以下是常见的分库分表产品和Sharding-JDBC的对比:

功能 Cobar Cobar-client TDDL Sharding-JDBC
分库 未开源
分表 未开源
中间层
ORM支持 任意 仅MyBatis 任意 任意
数据库支持 仅MySQL 任意 任意 任意
异构语言 仅Java 仅Java 仅Java
外部依赖 Diamond

整体架构图

整体架构图

柔性事务-最大努力送达型

快速入门

引入maven依赖

<!-- 引入sharding-jdbc核心模块 -->
<dependency>
    <groupId>io.shardingjdbc</groupId>
    <artifactId>sharding-jdbc-core</artifactId>
    <version>${latest.release.version}</version>
</dependency>

规则配置

Sharding-JDBC的分库分表通过规则配置描述,以下例子是根据user_id取模分库, 且根据order_id取模分表的两库两表的配置。

可以通过Java编码的方式配置:

    // 配置真实数据源
    Map<String, DataSource> dataSourceMap = new HashMap<>();
    
    // 配置第一个数据源
    BasicDataSource dataSource1 = new BasicDataSource();
    dataSource1.setDriverClassName("com.mysql.jdbc.Driver");
    dataSource1.setUrl("jdbc:mysql://localhost:3306/ds_0");
    dataSource1.setUsername("root");
    dataSource1.setPassword("");
    dataSourceMap.put("ds_0", dataSource1);
    
    // 配置第二个数据源
    BasicDataSource dataSource2 = new BasicDataSource();
    dataSource2.setDriverClassName("com.mysql.jdbc.Driver");
    dataSource2.setUrl("jdbc:mysql://localhost:3306/ds_1");
    dataSource2.setUsername("root");
    dataSource2.setPassword("");
    dataSourceMap.put("ds_1", dataSource2);
    
    // 配置Order表规则
    TableRuleConfiguration orderTableRuleConfig = new TableRuleConfiguration();
    orderTableRuleConfig.setLogicTable("t_order");
    orderTableRuleConfig.setActualDataNodes("ds_${0..1}.t_order_${0..1}");
    
    // 配置分库策略
    orderTableRuleConfig.setDatabaseShardingStrategyConfig(new InlineShardingStrategyConfiguration("user_id", "ds_${user_id % 2}"));
    
    // 配置分表策略
    orderTableRuleConfig.setTableShardingStrategyConfig(new InlineShardingStrategyConfiguration("order_id", "t_order_${order_id % 2}"));
    
    // 配置分片规则
    ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
    shardingRuleConfig.getTableRuleConfigs().add(orderTableRuleConfig);
    
    // 省略配置order_item表规则...
    
    // 获取数据源对象
    DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, new ConcurrentHashMap(), new Properties());

或通过YAML方式配置,与以上配置等价:

dataSources:
  ds_0: !!org.apache.commons.dbcp.BasicDataSource
    driverClassName: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/ds_0
    username: root
    password: 
  ds_1: !!org.apache.commons.dbcp.BasicDataSource
    driverClassName: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/ds_1
    username: root
    password: 

tables:
  t_order: 
    actualDataNodes: ds_${0..1}.t_order_${0..1}
    databaseStrategy: 
      inline:
        shardingColumn: user_id
        algorithmInlineExpression: ds_${user_id % 2}
    tableStrategy: 
      inline:
        shardingColumn: order_id
        algorithmInlineExpression: t_order_${order_id % 2}
  t_order_item: 
    actualDataNodes: ds_${0..1}.t_order_item_${0..1}
    databaseStrategy: 
      inline:
        shardingColumn: user_id
        algorithmInlineExpression: ds_${user_id % 2}
    tableStrategy: 
      inline:
        shardingColumn: order_id
        algorithmInlineExpression: t_order_item_${order_id % 2}
    DataSource dataSource = ShardingDataSourceFactory.createDataSource(yamlFile);

规则配置包括数据源配置、表规则配置、分库策略和分表策略组成。这只是最简单的配置方式,实际使用可更加灵活,如:读写分离、多分片键、默认分片规则、分布式主键、级联表绑定等。

使用原生JDBC接口

通过ShardingDataSourceFactory工厂和规则配置对象获取ShardingDataSource,ShardingDataSource实现自JDBC的标准接口DataSource。然后可通过DataSource选择使用原生JDBC开发,或者使用JPA, MyBatis等ORM工具。 以JDBC原生实现为例:

DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig);
String sql = "SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.user_id=? AND o.order_id=?";
try (
        Connection conn = dataSource.getConnection();
        PreparedStatement preparedStatement = conn.prepareStatement(sql)) {
    preparedStatement.setInt(1, 10);
    preparedStatement.setInt(2, 1001);
    try (ResultSet rs = preparedStatement.executeQuery()) {
        while(rs.next()) {
            System.out.println(rs.getInt(1));
            System.out.println(rs.getInt(2));
        }
    }
}

使用Spring命名空间配置

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns:context="http://www.springframework.org/schema/context"
    xmlns:sharding="http://shardingjdbc.io/schema/shardingjdbc/sharding" 
    xsi:schemaLocation="http://www.springframework.org/schema/beans 
                        http://www.springframework.org/schema/beans/spring-beans.xsd
                        http://www.springframework.org/schema/context 
                        http://www.springframework.org/schema/context/spring-context.xsd 
                        http://shardingjdbc.io/schema/shardingjdbc/sharding 
                        http://shardingjdbc.io/schema/shardingjdbc/sharding/sharding.xsd 
                        ">
    <context:property-placeholder location="classpath:conf/conf.properties" ignore-unresolvable="true" />
    
    <bean id="ds_0" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
        <property name="driverClassName" value="com.mysql.jdbc.Driver" />
        <property name="url" value="jdbc:mysql://localhost:3306/ds_0" />
        <property name="username" value="root" />
        <property name="password" value="" />
    </bean>
    <bean id="ds_1" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
        <property name="driverClassName" value="com.mysql.jdbc.Driver" />
        <property name="url" value="jdbc:mysql://localhost:3306/ds_1" />
        <property name="username" value="root" />
        <property name="password" value="" />
    </bean>
    
    <sharding:inline-strategy id="databaseStrategy" sharding-column="user_id" algorithm-expression="ds_${user_id % 2}" />
    <sharding:inline-strategy id="orderTableStrategy" sharding-column="order_id" algorithm-expression="t_order_${order_id % 2}" />
    <sharding:inline-strategy id="orderItemTableStrategy" sharding-column="order_id" algorithm-expression="t_order_item_${order_id % 2}" />
    
    <sharding:data-source id="shardingDataSource">
        <sharding:sharding-rule data-source-names="ds_0,ds_1">
            <sharding:table-rules>
                <sharding:table-rule logic-table="t_order" actual-data-nodes="ds_${0..1}.t_order_${0..1}" database-strategy-ref="databaseStrategy" table-strategy-ref="orderTableStrategy" />
                <sharding:table-rule logic-table="t_order_item" actual-data-nodes="ds_${0..1}.t_order_item_${0..1}" database-strategy-ref="databaseStrategy" table-strategy-ref="orderItemTableStrategy" />
            </sharding:table-rules>
        </sharding:sharding-rule>
    </sharding:data-source>
</beans>